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Abstract. A high-temperature approximation for the discretized path-integral quantum Monte
Carlo (PIQMC) method is formulated. At higher temperatures, allP fictitious classical particles
representing a single quantum particle stay close together, and an efficient approximation
is obtained when, in the primitive short-time propagator, an essentially local harmonic
approximation is used for the external potential at the common centre of mass ofP fictitious
particles—the integration overP − 1 dimensions can then be carried out analytically, and a
classical formula of the effective-potential type is obtained for the partition function.

Also discussed are the proper form and applicability of the virial total-energy estimator
for finite systems, and the computation of the temperature dependence of the configurational
partition function in a single PIQMC run.

1. Introduction

The success of the classical NVT ensemble (Metropolis) Monte Carlo (MC) method [1]
led to a considerable interest in devising the quantum variants of the method based on the
Feynman’s path integral formulation of the density matrix [2, 3]. For bosons, two versions
of the path-integral quantum Monte Carlo (PIQMC) method have been formulated—the
discretized PIQMC method [4–8], and the Fourier PIQMC method [9, 10]. Various real
systems have already been successfully studied using these methods [8, 11]. Nevertheless,
it remains important to look for ways to speed up their convergence. One way to achieve
this goal is to construct more accurate short-time propagators [12–16]. A complementary
approach is to use the Gibbs inequality to ‘average away’ at least some of theP isomorphic
degrees of freedom. The simplest approximation of this kind is the Feynman–Hibbs effective
potential method [2, 3]. A similar Gaussian transform of the potential is used in the partial
averaging of the Fourier PIQMC method [10], which can be arbitrarily refined. Another,
more complicated approach is to combine the use of the Gibbs inequality with perturbational
and variational procedures [17].

Here we proceed along yet another path. The initial impulse for this work came from
our exploration of the use of PIQMC simulations for the study of surface adsorption. It
led us to the formulation of an approximate discretized PIQMC method that is as simple
as the Feynman–Hibbs effective potential method. However, our ‘effective potential’ does
not involve a Gaussian transform at all. Here we stay within the confines of the primitive
(constant-potential) short-time propagator within the discretized PIQMC method. In the
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coordinate system corresponding to normal modes of the isomorphic polymer, we expand
the external potential about the common centre of mass of theP fictitious classical particles,
truncate the potential at the quadratic term at the most, and use this truncated potential in
the primitive short-time propagator. The end product is an approximate formula for the
quantum partition function that can be written in the form of a classical formula with
quantum corrections. In theP → ∞ limit this approximation gives exact results at
high temperatures in all cases, and for the harmonic oscillator potential this appliesat
all temperatures, and it is expected to give good results in a wide temperature range for
a class of anharmonic oscillator potentials. Even at low temperatures this approximation
seems to be much better than previous approximations of comparable complexity [3, 10]
that do not give exact results even for the harmonic oscillator potential.

In section 2 the discretized PIQMC method is reviewed briefly and the proper form
of the virial total-energy estimator for box-like potentials established. PIQMC simulations
for the 9–3 potential of appendix A and the usefulness of the corrected virial estimator for
this potential are discussed in section 3. In section 4 the direct quasi-random integration
of the P -dimensional integrals for the ensemble averages occurring in the PIQMC method
is described. The insight obtained in sections 3 and 4 is then used in the formulation
of the approximate high-temperature PIQMC method in section 5. Some technical details
are presented in the appendices. In section 6 the possibility of obtaining the temperature
dependence of a configurational partition function in a single PIQMC run is demonstrated.

2. The discretized PIQMC method and the virial total-energy estimator

In the discretized PIQMC method based on the primitive short-time propagator [4–8],
the quantum canonical partition function of one particle in the external potentialV (x)

is approximated by that of a cyclic chain ofP classical particles, which, in one dimension,
is

QP = CP/2
∫

dx1 · · ·
∫

dxP e−βUP (1)

where

UP = αP + λP αP = Cπ

β

P∑
t=1

(xt − xt+1)
2 λP = 1

P

P∑
t=1

V (xt ) (2)

C = mP/2πβh̄2, xP+1 ≡ x1 ≡ x, andβ = 1/kT is the reciprocal temperature. Equation (1)
can be written as

QP =
∫

dx1 ρP (x1, x1, β)

whereρP is the P -approximation of the canonical density matrix, whose diagonal matrix
elements are

ρP (x, x, β) ≡ ρP (x) = CP/2
∫

dx2 · · ·
∫

dxP e−β UP . (3)

SubstitutingQP in the total-energy formula

〈E〉 = −∂ ln Q

∂β
(4)

yields the approximation

εP = P

2β
− αP + λP . (5)
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Hermanet al [6] have shown that the variance〈δε2
P 〉 = 〈(εP − 〈εP 〉)2〉 of this estimator

diverges asP → ∞. They have also shown that in an infinite Hilbert space a virial theorem
applies, and another good total-energy estimator is the virial estimator,

εvir
P = 1

2P

P∑
t=1

xt

∂V (xt )

∂xt

+ λP (6)

which has finite variance asP → ∞.
For a potential defined only in the finite interval(xmin, xmax), the limits of integration

in all integrals in equations (1) and (3) arexmin and xmax. In this case, the average value
〈εvir

P 〉 of the virial estimator of equation (6) depends on the origin of coordinates,

〈εvir
P 〉 = 〈εP 〉 − P

2βQP

φ (7)

where

φ = xmaxρP (xmax) − xminρP (xmin)

= xmin[ρP (xmax) − ρP (xmin)] + LρP (xmax)
(8)

L = xmax − xmin, and QP and ρP are given by equations (1) and (3). By equation (7),
εvir
P is not always a good total-energy estimator. Whereas the exact densities must be equal

to zero at the system boundaries,ρ(xmin) = ρ(xmax) = 0, this is not true for theirP -
approximantsρP . For example, in a symmetric system whenρP (xmax) = ρP (xmin) 6= 0,
〈εvir

P 〉 is consistently less positive or more negative than〈E〉 ≡ 〈εP 〉.
If ρP (xmax) 6= ρP (xmin), φ depends on the position of the coordinate origin and can

always be made equal to zero by the following coordinate transformation:x ′ = x+x0−xmin,
where

x0 = − LρP (xmax)

ρP (xmax) − ρP (xmin)
. (9)

In the new coordinate systemx ′
min = x0, and equation (8) givesφ′ = 0. The virial estimator

corresponding to this special choice of coordinate origin, expressed in the old coordinate
system, is

εvir0
P = 1

2P

P∑
t=1

(xt + x0 − xmin)
∂V (xt )

∂xt

+ λP . (10)

Then

〈εvir0
P 〉 = 〈εP 〉.

In a general case, the disadvantage ofεvir0
P is that one has to know in advanceρP (xmin)

and ρP (xmax) to be able to calculatex0. However, if V (xmin+) = ∞, ρP (xmin) = 0
(see equation (3)) andx0 = −L. This happens to be the case for the 9–3 potential of
equations (A1) or (A3). For this potentialxmin = 0, and

εvir0
P = 1

2P

P∑
t=1

(xt − L)
∂V (xt )

∂xt

+ λP . (11)

Similarly, if V (xmax−) = ∞, ρP (xmax) = 0 andx0 = 0.
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Figure 1. Localization of the quantum particle as a function of inverse temperature. In
this schematic representation of the isomorphic polymer, particles 1 toP are represented
consecutively by the firstP symbols from the series 0, 1, 2,. . ., 9, A, B,. . ., Z, a, b,. . ., z.
The polymer may be folded over itself many times, with more than one polymer particle in
a given bin in the histogram ofz, the height above the surface; only the highest index is
shown in each bin. Data for parts of two different runs, without the whole-polymer moves, are
shown every 50 000 MC cycles for the truncated 9–3 potential withz0 = 3 Å, Vm = 4.8 meV,
m = 1837.151 52mel.

3. Path-integral quantum Monte Carlo simulations for the 9–3 potential

In this section, we briefly review the results of the standard discretized PIQMC simulations
for the truncated 9–3 potential of appendix A, with parameters corresponding to H of a
molecule of HF adsorbed on the surface of solid LiF [18] (m = 1837.152mel, z0 = 3 Å,
Vm = 4.8 meV). For these values, the ground-state energy isE0 = −1.9020 meV.

At low temperatures(β & 2 meV−1) the particle shows strong quantum behaviour,
being well delocalized (figure 1(a)), and good convergence is obtained using the simple
PIQMC method. For high temperatures(β . 1 meV−1) and largeL, whole-polymer moves
must be attempted periodically to speed up the sampling of the whole allowedz range (cf
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Figure 2. The converged path-integral quantum Monte Carlo results for〈εP 〉 for the same 9–3
potential as in figure 1. Diamonds(♦): L = 10 Å {β > 1.4 meV−1: 107 cycles,P = 60;
β = 1.0 meV−1: 107 cycles,P = 40; β = 0.5 meV−1: 4×107 cycles,P = 40; β = 0.2 meV−1:
2.5×107 cycles,P = 10}. Boxes(�): L = 40Å {β = 1.0 and 2.0 meV−1: 107 cycles,P = 60;
β = 1.4 meV−1: 1.5×107 cycles,P = 60, four different values of the maximum whole-polymer
shift (2–10Å) used;β = 0.5 meV−1: 2.6×107 cycles,P = 40; β = 0.2 meV−1: 4×107 cycles,
P = 10}. In all cases except forL = 10 Å and β > 1.4 meV−1, whole-polymer moves were
performed. Full curves labelled byL represent the exact values of〈E〉 of equation (A4).

figure 1(b)) where without the whole-polymer moves only a small part of the allowed range
was sampled in 106 cycles). Figure 2 shows that by using large enough values ofP for
different values ofβ andL excellent agreement of the PIQMC results with the exact values
of 〈E〉 can be obtained. Forβ = 2.0 meV−1, P = 60 is clearly still not large enough. The
dependence of the converged〈εP 〉 on P is illustrated in figure 3.

Figure 4 compares the exact (as obtained by the diagonalization procedure mentioned in
appendix A) quantum-mechanical particle density(1/Q)ρ(z, z, β) with the average density
of quantum polymer particles for one of the simulations of figure 2. The discrepancy at the
density peak is an artifact of the averaging occurring in a histogram bin of width1z used
to evaluate the PIQMC density.

As illustrated in figure 5, in accordance with equation (7),〈εvir
P 〉 is consistently less than

〈εP 〉; this difference decreases withβ. Using 〈εvir0
P 〉 to correct for the origin dependence,

equation (11), produces close agreement with〈εP 〉. The dependence of the variances ofεP

andεvir
P on P , figure 6, is similar to that in the harmonic oscillator (cf figure 2 of [6]).

It seems that the corrected virial estimatorεvir0
P of equation (11) is not much more

useful thanεvir
P . Although the value of〈εvir0

P 〉 is close to〈εP 〉 it is evident from figure 5
that its convergence to the same limit as〈εP 〉 is extremely slow. In other cases, the rate
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Figure 3. Dependence of〈εP 〉 (♦) on P . (a) L = 10 Å, β = 4.0 meV−1, 2 × 106 cycles, no
whole-polymer moves; (b)L = 10 Å, β = 0.5 meV−1, 4 × 107 cycles, whole-polymer moves
done every five cycles. Same potential as in figure 1. Full horizontal lines represent the exact
values of〈E〉 of equation (A4).

of convergence may be even more discouraging than that in figure 5:〈εvir0
P 〉 may fluctuate

around〈εP 〉 without any sign of damping, and its variance seems to always be much larger
than that ofεvir

P . For example, the values of〈δ(εvir0
P )2〉 for 107 cycles corresponding to

figure 6(β = 4.0 meV−1) vary from 42.65 meV2 for P = 2 to 31.15 meV2 for P = 150. It
seems that〈δ(εvir0

P )2〉 is always much larger than〈δ(εvir
P )2〉 and〈δε2

P 〉 in the range of values
of P required to get a satisfactory agreement of〈εP 〉 with 〈E〉.

The fluctuations ofεvir0
P are evidently due to the presence of the−L term in

equation (11). Because of this term, the main contribution to〈εvir0
P 〉 comes from the region

to the left of the minimum of the potential where the derivative of the potential is large and
the sampling may not be satisfactory.
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Figure 4. Comparison of the exact normalized particle density (full curve) with the PIQMC
results(♦) for one simulation of figure 2:L = 10 Å, β = 1.4 meV−1.

4. Direct integration of thermal averages for smallβ

In this section we prepare ground for the approximate PIQMC method formulated in the
next section by exploring what contributes most to the PIQMC ensemble averages that are
given by ratios ofP -dimensional integrals of the type

〈AP 〉 =
∫ xmax

xmin
dx1 · · · ∫ xmax

xmin
dxP AP (x1, . . . , xP )e−βUP∫ xmax

xmin
dx1 · · · ∫ xmax

xmin
dxP e−βUP

(12)

whereAP (x1, . . . , xP ) are suitable estimators, for example those given by equations (5) or
(11).

It can be seen from equation (2) that asβ → 0 (T → ∞), αP becomes extremely large
except when allxt are almost identical, i.e. near a body diagonal of the integration volume
in equation (12)—aP -dimensional cube of edgeL = xmax− xmin. P -dimensional integrals
with the values ofP used in the previous section for smallβ can be calculated using
pseudo- or quasi-random grids (see e.g. [19, 20]). To speed up convergence, integration in
equation (12) can be confined to a narrow ‘channel’ around the body diagonal where e−βUP

is significantly different from zero. To make things simpler, a channel of rectangular cross
section is chosen. A Cartesian coordinate system is used where one basis vector,u1, is
parallel to the body diagonal, and all the others,u2, . . . ,uP , are perpendicular to it. The
width of the integration channel is the same in all the directionsu2, . . . ,uP , and will be
denoted as1. One way to choose the componentsuji of the normalized vectorsuj is

u1i = 1/
√

P i = 1, . . . , P (13)
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Figure 5. Comparison of the dependence on the number of cycles of〈εvir0
P 〉(+) and 〈εvir

P 〉(♦)

with that of 〈εP 〉(M) for the (β = 0.2 meV−1, L = 40 Å) point of figure 2.

and forj > 1,

uji =


1/

√
j (j − 1) i < j

−
√

(j − 1)/j i = j

0 i > j

(another possible choice is discussed in the next section). The transformation to the new
coordinatesξj thus reads

xi =
P∑

j=1

ξjuji . (14)

The reduced integration volume is the intersection of theP -dimensional rectangular prism
determined by the inequalities

xmin√
P

6 ξ1 6 xmax√
P

− 1

2
6 ξj 6 1

2
j > 2 (15)

and the original cube

xmin 6 xi 6 xmax. (16)

Monte Carlo integration was performed as follows. A ‘random’ uniformly distributed
P -dimensional point(η1, . . . , ηP ) in a unit cube, 06 ηj < 1, was generated using either the
fast Halton quasi-random number generator [20] or the pseudo-random RANMAR generator
[21]. This point was then mapped onto the prism (15) as follows:

ξ1 = xmin + η1L√
P

ξj = (− 1
2 + ηj )1 j > 2.
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Figure 6. Dependence of〈δε2
P 〉(♦) and〈δ(εvir

P )2〉(+) on P . Same parameters as in figure 3(a).

Then xi were calculated using equation (14), and it was checked whether this point
lies in the cube (16). If the answer was affirmative, integrands of all the integrals in
question (several〈AP 〉 can be calculated simultaneously) were calculated and added to the
respective accumulators. One of the accumulators was set up for e−βUP (the denominator
in equation (12)). The total number of random points sampled in this way will be denoted
asN in what follows.

The particle densityρP (x), as given by equation (3), can be calculated in a similar way.
For simplicity, for a givenx = x1, we integrate over a(P − 1)-dimensional cube of edge
1 centred around the point where all coordinates are equal tox:

x − 1

2
6 xi 6 x + 1

2
i = 2, . . . , P . (17)

If this small cube ‘sticks out’ of the big cube of equation (16), we shift its centre along the
diagonal of the big cube so that it is fully contained inside the big cube.

All the numerical results in this section were obtained using the Halton numbers with
randomly selected starting points for individual vector components as described in [20],
which were found to be as good for this purpose as the pseudo-random numbers generated
by RANMAR, and might even lead to a somewhat faster convergence.

The value of1 and the numberN of the random grid points can be adjusted to give
the best results. When1 is too small, the integral already converges for smallN , but the
estimate ofQP thus obtained is too small because e−β UP is still large outside the prism (15).
When 1 is too large, the generated quasi-random grid is so sparse that few points lie in
the region near the main diagonal where e−β UP is non-zero even for very largeN , and the
estimate ofQP will again be too small. Let us denote byQP (1, N) the approximation
to QP of equation (1) obtained withN quasi-random points uniformly distributed in the
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Figure 7. Dependence ofQP (1, N) on 1 for several values ofN ; P = 10, β = 0.2 meV−1.
Same potential as in figure 1,L = 40 Å.

prism (15). ThenQP (1, ∞) is expected to be a monotone function of1 that at first
increases rapidly and then, for1 & 10, approaches a constant, equal to the exact value
QP = QP (∞, ∞). 10 corresponds to the situation when the prism (15) just circumscribes
the region with non-zero e−β UP . To get the value ofQP (1, ∞) for larger values of1
requires extremely largeN . Thus the best approach may be to plotQP (1, N) for a fixed
N as a function of1. This function should have a maximum at1 ≈ 10. When this
maximum does not change any more asN is further increased (see figure 7), we can stop
the integration and consider the values of various averages (12), obtained with the value
of 1 corresponding to the position of the maximum of theQP (1, N) curve, as reasonable
estimates that can be obtained in the shortest possible time.

Similarly, let us denote byρP (x; 1, N) an estimate toρP (x) obtained usingN random
(P − 1)-dimensional points uniformly distributed in the cube (17). Again, for the same
reason,ρP (x; 1, N) with constantN has a maximum at certain1′

0. When this maximum
does not change any more asN is further increased, we take it as a good approximation of
ρP (x). For x = xmax, this estimate ofρP (x) is usually much better than the one obtained
from the PIQMC simulations as described in the previous section. The calculation ofρP (x)

seems to require larger values ofN than that ofQP and average energy.
For the parameters of figure 7(β = 0.2 meV−1) we have the following estimates:

Q10 = 17.1, 〈ε10〉 = 2.1± 0.05 meV (the error estimate corresponds to the amplitude of the
fluctuations of〈ε10〉 betweenN = 107 and 2×107), 〈εvir

10〉 = −0.37 meV (using the incorrect
formula (6)), 〈εvir0

10 〉 = 2.4 meV. From a different MC integration forρ10(xmax; 1, N), we

have ρ10(xmax) = 0.0442 Å
−1

. These values give(P/2βQP )φ = 2.58 meV, and thus
equation (7) is very well satisfied with the error between its right- and left-hand sides
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being of the order of 0.1 meV (recall thatρP (xmin) = 0). For comparison, a PIQMC
simulation gave〈ε10〉 = 2.13 meV (cf figure 2) and〈εvir0

10 〉 = 2.17 meV. The exact value is
〈E〉 = 2.143 meV. Of course, the exact quantum density atxmax is always equal to zero.
In this respect, the PIQMC method is always incorrect for finiteP .

We have also performed modified calculations in which the integration was extended
over the whole volume of the prism (15), i.e. the condition (16) was ignored. This only
affected the results slightly, because for smallβ only a negligible portion of the prism (15)
lies outside the big cube. Thus extending the integration limits to infinity everywhere in the
direction perpendicular to the main diagonalu1 does not significantly change the results.

The CPU time required to obtain converged integrals of equation (12) for a single value
of 1 is about half of the time needed for a corresponding PIQMC simulation with the same
P . However, the total CPU time can be much larger due to the necessity of repeating the
calculations for different values of1. We do not expect that this approach in its pure form
will find any practical application. Perhaps it could find some use as part of a hybrid method
along some directions of the configuration space in combination with the standard PIQMC
simulation for the remaining degrees of freedom. An approximate approach along this line
is formulated in the next section. The primary purpose of this section was to provide a
starting point and some justification for the high-temperature approximation presented in
section 5.

5. A high-temperature approximation for the PIQMC method

In this section, working in the normal-mode coordinates forαP , we apply an essentially local
harmonic approximation for all the occurrences of the external potential in equation (12).
Most of the integrals occurring in equation (12) can then be evaluated analytically and an
efficient high-temperature approximation of the PIQMC method (HTPIQMC) is obtained.

The formula forαP of equation (2) can be written as

αP = Cπ

β

P∑
i,j=1

xi(aP )ij xj (18)

where

a2 =
(

2 −2
−2 2

)
(19a)

aP =



2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2

 P > 2. (19b)

Let κj be the eigenvalues ofaP , anduj the corresponding normalized eigenvectors. The
values ofκj depend onP (see appendix B and table 1). Where no confusion can arise, in
what follows we do not explicitly denote all the dependences ofκj , uj , and many other
quantities to avoid complicated notation.

With this choice of uj , let us define new coordinatesξj again using the
transformation (14). It is obvious from equations (19) that for arbitraryP > 2 one of
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Table 1. List of the doubly degenerate eigenvalues of the matrixaP for small values ofP .

P κj

3 3
4 2
5 (5 ∓ √

5)/2
6 1, 3
7 [7 − 2

√
7 cos(ϕ/3)]/3, [7+ √

7 cos(ϕ/3)]/3 ∓ √
(7/3) sin(ϕ/3)a

8 2, 2∓ √
2

9 3, 2[1+ cos(π/9)], 2 − cos(π/9) ∓ √
3 sin(π/9)

10 (3 ∓ √
5)/2, (5 ∓ √

5)/2
12 2, 1, 3, 2∓ √

3
14 [7− 2

√
7 cos(ϕ/3)]/3, [7+ √

7 cos(ϕ/3)]/3 ∓ √
(7/3) sin(ϕ/3),

[5 + 2
√

7 cos(ϕ/3)]/3, [5− √
7 cos(ϕ/3)]/3 ∓ √

(7/3) sin(ϕ/3)a

15 3, (5 ∓ √
5)/2, [7− √

5 ∓
√

6(5 − √
5)]/4, [7+ √

5 ∓
√

6(5 + √
5)]/4

16 2, 2∓ √
2, 2∓

√
2 − √

2, 2∓
√

2 + √
2

18 1, 3, 2[1∓ cos(π/9)], 2 ∓ cos(π/9) + √
3 sin(π/9), 2∓ cos(π/9) − √

3 sin(π/9)

20 2, (3 ∓ √
5)/2, (5 ∓ √

5)/2, 2∓
√

(5 − √
5)/2, 2∓

√
(5 + √

5)/2

a Here cosϕ = 1/(2
√

7) and 0< ϕ < π/2.

the eigenvalues ofaP is always zero, let us sayκ1 = 0, and the corresponding eigenvector
is given by equation (13). Thus we may write

xi = ξ1√
P

+
P∑

j=2

ξjuji . (20)

BecauseaP is a real symmetric matrix,uj constitute an orthonormal basis:

P∑
i=1

ujiuki = δjk. (21)

As a result of this orthonormality, the last term in equation (20) represents a component of
a vector perpendicular to the main diagonal. Using equations (20) and (21), one gets the
normal form

αP = Cπ

β

P∑
j=2

κj ξ
2
j . (22)

Substituting this into equation (1) and switching to theξ coordinates gives

QP = C(P/2)

∫ √
Pxmax

√
Pxmin

dξ1

∫ +∞

−∞
dξ2 · · ·

∫ +∞

−∞
dξP exp

[
− Cπ

P∑
j=2

κj ξ
2
j − βλP

]
. (23)

Here we have already made an approximation by extending the integration limits in the
directionsξ2, . . . , ξP (perpendicular to the main diagonal) to infinity. Whenxmin = −∞
andxmax = +∞ (such as for the harmonic oscillator), this is no approximation at all. For
the truncated 9–3 potential, we have verified in the previous section that this extension of
integration limits does not change the results significantly for high temperatures.

For high temperatures, we know that the integrand in equation (23) is significantly
different from zero only forξj ≈ 0; j > 2. Here one can expandV (xt ) present inλP into
a Taylor series atx = ξ1/

√
P (the common centre of mass of all particles) and truncate the
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expansion after the term of degree 2 ifV ′′(x) > 0, or otherwise also neglect the second-
degree term. In this way, using equation (20) and (21),

λP = 1

P

P∑
t=1

V

(
x +

P∑
j=2

ξj ujt

)

≈ 1

P

P∑
t=1

[
V (x) + V ′(x)

P∑
j=2

ξjujt + 1
2 max(V ′′(x), 0)

( P∑
j=2

ξj ujt

)2]

= V (x) + 1

2P
max(V ′′(x), 0)

P∑
j=2

ξ2
j (24)

wherex = ξ1/
√

P . Substituting this truncated Taylor series into equation (23) gives the
desired high-temperature approximation forQP :

Q
(hT)
P = CP/2

√
P

∫ xmax

xmin

dx e−βV (x)
P∏

j=2

+∞∫
−∞

e−γj (x)ξ2
j dξj

whereγj (x) = Cπκj + (β/2P) max(V ′′(x), 0). The integrals overξj can now be evaluated
analytically, and we get

Q
(hT)
P =

√
PCP/2qP (25a)

qP =
∫ xmax

xmin

B(x)e−βV (x) dx B(x) =
P∏

j=2

√
π

γj (x)
. (25b)

Using the same approximations for〈αP 〉 and〈λP 〉 gives

〈αP 〉(hT) = αP

qP

(26a)

αP = Cπ

2β

∫ xmax

xmin

[ P∑
j=2

κj

γj (x)

]
B(x)e−βV (x) dx (26b)

and

〈λP 〉(hT) = λP

qP

(27a)

λP =
∫ xmax

xmin

[
V (x) + 1

4P
max(V ′′(x), 0)

P∑
j=2

1

γj (x)

]
B(x)e−βV (x) dx. (27b)

When deriving these formule, approximation (24) was used for all occurrences ofλP . Note
that one could further improve equation (27b) by including an arbitrary number of terms
in the Taylor series ofλP when λP occurs as the prefactor of e−β UP (in the role of the
AP (x1, . . . , xP ) term of equation (12)) while retaining at most the term of degree 2 in
e−β UP . This would lead to the appearance of additional terms inside the square brackets of
equation (27b) proportional to even-order derivatives ofV (x), and the rest of the integrand
would remain unchanged. However, these additional terms would also be dependent on the
components ofuj , which would complicate the computation considerably. For example,
the next term inside the square brackets would be(1/32P)V (4)(x)T4(x), where

T4(x) =
P∑

j=2

1

γj (x)2

P∑
i=1

u4
ji + 2

P−1∑
j=2

P∑
k=j+1

1

γj (x)γk(x)

P∑
i=1

u2
jiu

2
ki . (28)
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Proceeding in the same way for the virial estimator of equation (11), we get

〈εvir0
P 〉(hT) = εvir0

P

qP

(29a)

εvir0
P =

∫ xmax

xmin

[
f (x) + 1

4P
f ′′(x)

P∑
j=2

1

γj (x)
+ 1

32P
f (4)(x)T4(x) + · · ·

]
B(x)e−βV (x) dx

(29b)

where

f (2k)(x) = (k + 1)V (2k)(x) + 1
2(x − L)V (2k+1)(x) k > 0.

Dropping the−L term in this formula gives the expression for〈εvir
P 〉(hT) (cf equation (6))

suitable forxmin = −∞ andxmax = +∞. The HTPIQMC results presented below have been
obtained using only the harmonic approximation (27b), neglecting all the terms proportional
to f (4)(x) and higher derivatives off (x) in equation (29b).

Note that equation (25b), (26b), (27b), and (29b) have the form of the classical averages
of position-dependent functionsB(x), (Cπ/2β)

∑P
j=2[κj/γj (x)]B(x), etc, over a classical

canonical ensemble corresponding to the potentialV (x). In principle, one can use the
classical MC simulation to calculate these averages. In the present case, it is of course
much simpler to carry out the remaining one-dimensional integration in equations (25b),
(26b), (27b), and (29b) numerically (we have used the Romberg interpolation scheme for
this purpose). However, a generalization of this approximation to the case of many quantum
particles could naturally lead to such an essentially classical MC simulation involving certain
quantum corrections while retaining a number of degrees of freedom comparable to the
classical case, which is a major gain in efficiency.

A similar approximation can be derived for the particle densityρP (x) of equation (3).
As we observed in the previous section, e−βUP for a givenx ≡ x1 is significantly different
from zero only forx2 ≈ x3 ≈ · · · ≈ xP ≈ x. It is thus possible to truncate the Taylor series
for UP , keeping only the terms of at most degree 2 or less,

yi = xi+1 − x i = 1, . . . , P − 1

to get

UP ≈ C

[
y2

1 +
P−2∑
j=1

(yi − yi+1)
2 + y2

P−1

]
+ V (x) + 1

P

P−1∑
j=1

[V ′(x)yi + 1
2 max(0, V ′′(x))y2

i ]

(here the terms originating fromαP are exact). This can be rewritten as

UP ≈ V (x) + b · y + C y · ãP−1 · y (30)

where all the elements ofb are identical,bi = (1/P )V ′(x), andãP−1 is a tridiagonal matrix
of the orderP − 1 with the following non-zero elements:

(ãP−1)ii = 2 + δ δ = (1/2PC) max(0, V ′′(x))

(ãP−1)ij = −1 if |i − j | = 1. (31)

Substituting equation (30) into equation (3) and extending the integration limits to±∞
in all integrals (justified for high temperatures) gives

ρ
(hT)
P (x) = CP/2e−βV (x)

∫ +∞

−∞
dy1 · · ·

∫ +∞

−∞
dyP exp(−βCy · ãP−1 · y − βb · y).
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Again using a transformation of type (14), whereui are now eigenvectors of the matrix (31),
this can be evaluated analytically [22] to give

ρ
(hT)
P (x) =

(
C

det(ãP−1)

)1
2
(

π

β

)(P−1)/2

e−βV (x) exp

[
β

4C
b · ã−1

P−1 · b

]
. (32)

The determinant det(ãP−1) is given by equation (C1) and (C2) of appendix C. The matrix
product in the argument of the last exponential is

b · ã−1
P−1 · b =

[
1

PV ′(x)

]2

SP−1

whereSn = ∑n
i=1

∑n
j=1(ã

−1
n )ij . The sumSn of all elements of the inverse matrix̃a−1

n is
given by equation (C3) of appendix C.

Figure 8. Comparison of the HTPIQMC results of section 5 for the 9–3 potential with the exact
PIQMC results, from direct Halton integration.P = 2. Boxes(�): HTPIQMC values of〈ε2〉
obtained using equations (25)–(27). Diamonds(♦): HTPIQMC values of〈ε2〉 obtained using
the modified formule corresponding to the finite integration limits in theξ2 direction (such that
the resulting two-dimensional integral is over the square 0< x1,2 < L/σ ). Crosses(+): the
values of〈ε2〉 obtained by Halton integration. Same potential as in figure 1,L = 40 Å. The
full curve represents the exact value of〈E〉 of equation (A4).

For P = 2, it is easy to find the exact integration limits forξ2 in equation (23). In
figure 8 results obtained with such exact integration limits are compared with the standard
HTPIQMC results corresponding to

∫ ∞
−∞ dξ2. One can see, that they are practically identical.

This again supports the assumption that the extension of integration limits to infinity does
not introduce any significant error.

What is somewhat surprising in figure 8 is the fact that for arbitraryβ, the HTPIQMC
results forP = 2 are very close to the exact PIQMC results forP = 2, which can be
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Figure 9. The HTPIQMC values of〈εP 〉 obtained in the limitP → ∞ (P = 256) for the same
9–3 potential as in figure 1. Diamonds(♦): L = 10 Å; boxes(�): L = 40 Å. The full curves
labelled byL represent the exact values of〈E〉 of equation (A4).

obtained very easily by the direct Halton integration of the previous section (much faster
than PIQMC simulation). Of course, except for the smallest values ofβ, theP = 2 results
are far from the exact (P = ∞) results. AsP increases, the close agreement of the
HTPIQMC and the exact PIQMC results is maintained only for small values ofβ. This
can be seen in figure 9 where the HTPIQMC results are compared with the exact values
of 〈E〉. In the P → ∞ limit, the exact PIQMC results must be identical with the exact
〈E〉 values. Thus for the 9–3 potential, the HTPIQMC method is indeed a high-temperature
approximation. The HTPIQMC value for〈εvir0

P 〉 is consistently below that for〈εP 〉 even for
the smallestβ.

In figure 10 we present the HTPIQMC density obtained using equation (32). One can
see that it agrees with the exact density quite well everywhere, except near the peak. Similar
plots were obtained for a large range ofβ, with the excess HTPIQMC density at the peak
increasing withβ.

Equations (25) can also be written in the form of a classical expression,

Q
(hT)
P =

√
m

2πh̄2β

∫ xmax

xmin

e−βVeff(x) dx

where

Veff(x) = V (x) − 1

β
ln

[
PC(P−1)/2B(x)

]
.

Note that the form of our effective potentialVeff(x) is very different from the Gaussian
transform form of the Feynman–Hibbs effective potential, see for example equations (3.81)
and (3.90) of [3].



A high-T path-integral quantum MC method 3487

Figure 10. Comparison of the exact normalized particle density (full curve) with theP → ∞
HTPIQMC results(♦) for β = 0.3 meV−1 for the same 9–3 potential as in figure 1 with
L = 40 Å.

Let us now compare our HTPIQMC method with the two previous approximations of
comparable complexity—with the above-mentioned Feynman–Hibbs effective potential, and
with the simplest form of the partial averaging of the Fourier PIQMC of Dollet al [10]
corresponding tokmax = 0 in their formule. Whereas ourP → ∞ HTPIQMC method
gives exact results for the harmonic oscillator potential, the two previous methods do not.
Furthermore, they cannot be applied at all to the 9–3 potential because of its behaviour at
x = 0+, whereas the HTPIQMC method gives, for smallβ, satisfactory results even for
this difficult case. Finally, let us compare the three methods for the quartic oscillator with
V (x) = 1

2x4(m = h̄ = 1). For this case, the Feynman–Hibbs effective potential method [3]
gives

Q ≈
√

1

2πβ

∫ ∞

−∞
exp

[
− β

2

(
y4 + β

2
y2 + β2

48

)]
dy

and thekmax = 0 form of the partial averaging approach [10]

Q ≈
√

1

2πβ

∫ ∞

−∞
exp

[
− β

2

(
x4 + βx2 + β2

10

)]
dx.

Using these two approximations forQ in equation (4) gives the approximations for〈E〉 that
are presented in figure 11 together with the HTPIQMCP → ∞ results. One can see that
for all β the HTPIQMC results are much closer to the exact values of〈E〉 (obtained again
using the procedure of [27]) than the results of the other two approximations. Whereas
these two methods always give an upper bound for the (free) energy, from the way our
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high-temperature approximation forλp was derived, it seems that it could, most of the time,
give a lower boundof the energy.

Figure 11. The HTPIQMC P → ∞ values(�) of 〈εP 〉 for the quartic oscillator potential
V (x) = 1

2x4(m = h̄ = 1). For comparison, the results obtained with two other approximations
of comparable complexity—with the Feynmann–Hibbs effective potential method(+) and the
simplest form of the partial averaging approach(♦)—are also shown. The full curve represents
the exact value of〈E〉.

Unlike in the case of the 9–3 potential, for the quartic oscillator the HTPIQMC procedure
gives practically identical estimates for〈εvir

P 〉 and 〈εP 〉. The HTPIQMC density is again
larger near the peak (atx = 0) than the exact density.

The CPU time required for an HTPIQMC calculation usingP 6 256 is orders of
magnitude smaller than that for full PIQMC simulations or from direct Halton integration
of comparable accuracy. ForP = 2n with n > 8, one usually encounters overflows when
calculating the integrands of equation (25b) to (29b); however, the convergence (asP → ∞)
is usually achieved well beforeP = 256. ForP = 2n we use equation (B9).

6. Calculation of the configurational partition function QP

In this section, we discuss the possibility of obtaining theβ dependence ofQP in a single
PIQMC run. Note that in section 4 and 5 we were able to calculate directly the absolute
values of the partition functionQP . Especially for smallerβ, both methods are quite reliable
and give identical results. On the other hand, a direct calculation of the values of a partition
function in the usual MC simulation, for example, using the method of Salzburget al [23]
(i.e. usingAP (xi) = e+β UP in equation (12)), is known to be flawed (e.g. [24]). However,
a suitable choice ofAP (xi) can yield theβ dependence of the partition function in a certain
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range ofβ in a single PIQMC run. Substituting

AP (xi) = exp[βUP (β) − β̃UP (β̃)] (33)

into equation (12) gives

〈exp[βUP (β) − β̃UP (β̃)]〉β =
[
C(β)

C(β̃)

]P/2
QP (β̃)

QP (β)
. (34)

Here we denote explicitly the dependence of all the quantities on the inverse temperature
β, and〈 〉β means that the canonical ensemble average is calculated atβ.

In the case studied here,UP (β) = αP (β)+λP , whereαP (β) = αP /β2, cf equation (2),
whereαP andλP do not depend onβ. Substituting this expression into equation (34) gives

QP (β̃) = QP (β)

(
β

β̃

)P/2 〈
exp

{
(β − β̃)

[
−β

β̃
αP (β) + λP

]}〉
β

. (35)

Choosing 0< β̃ � β here gives a very small value of the exponential in most of the
configurational space (except in the vicinity of the main diagonal). This would make it
possible to obtain the ratioQP (β̃)/QP (β) for an arbitrary number of values of̃β, i.e. the
β̃ dependence ofQP (β̃) in a single PIQMC simulation performed at a larger value ofβ.
A different method to achieve the same goal has recently been proposed by Lyubartsev
et al [25] who use multi-temperature expansion of the canonical ensemble. Here all the
averaging is done at a single temperatureβ, using a series of estimators of equation (33)
for the other temperatures.

We have tested this approach forP = 2 where the exact values ofQ2(β) (which are of
course not identical withQ∞(β) for largeβ) can be quickly calculated by the HTPIQMC
method (cf figure 8). The results forβ = 0.5 meV−1 are presented in figure 12. For
β̃ < β, excellent agreement with the exact values ofQP (β̃)/QP (β) has been obtained. As
expected,β̃ > β gives consistently smaller values ofQP (β̃)/QP (β) because the first term
of the exponent in equation (35) is positive and very large far from the main diagonal where
the sampling is expected to be poor. Further testing is needed for larger values ofP .

7. Summary

The main achievement of this paper is the introduction of a high-temperature approximation
for the PIQMC method. This approximate method requires a negligible fraction of the CPU
time needed for standard PIQMC simulations, and has the potential for further improvement
by including higher-order terms in the local expansion of the potential. It gives exact
results for the harmonic oscillator potential, and it can be expected to be superior to
previous approximations of comparable complexity for a large class of potentials dealing
with molecular oscillations. Generalization of this approximate method to more complex
systems of interacting quantum particles requires further study.

A method for obtaining the temperature dependence of the configurational partition
functions in a single PIQMC run was proposed.

We have also found that even the corrected virial total-energy estimator that takes into
account the finiteness of the system is not very useful for the truncated 9–3 potential of
appendix A. For the values ofP already large enough to give theP → ∞ limit satisfactorily,
its convergence with the number of MC cycles is much worse than that of the direct total-
energy estimator.
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Figure 12. Boxes(�) represent the PIQMC ratioQP (β̃)/QP (β) for P = 2 andβ = 0.5 meV−1,
obtained for the 9–3 potential after 5× 107 MC cycles using equation (35). The full curve
represents the exact values (obtained by the HTPIQMC method, cf figure 8). Other parameters
are the same as in figure 1.
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Appendix A. 9–3 potential

A solid occupying the left (z < 0) half of the space is approximated by a continuum of inert
atoms that interact with an adatom positioned somewhere in thez > 0 half of the space via
a Lennard–Jones potential. Then the resulting potential experienced by the adatom is [26]

V (z) = 1

2
Vm

[(z0

z

)9
− 3

(z0

z

)3
]

z > 0. (A1)

Here Vm > 0 and z0 > 0. This 9–3 potential has a minimum equal to−Vm at z = z0.
Because a MC simulation cannot sample an infinite region in finite time, we have to add
an infinitely high wall toV (z) at z = L > 0 (assumeV (z) = ∞ for z > L). Let En be the
eigenvalues of the truncated Hamiltonian,

H = − h̄2

2m

d2

dz2
+ V (z) 0 < z < L (A2)
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whereV (z) is given by equation (A1). To findEn, it is convenient to introduce atomic-like
units by scalingz = σx andH = (h̄2/mσ 2H). Then

H = −1

2

d2

dx2
+ c1

x9
− c2

x3
0 < x <

L

σ
(A3)

wherec1 = 1
2(mVmz9

0/σ
7h̄2) and c2 = 3

2(mVmz3
0/σh̄2). Using σ 2 = 1

3h̄z0/(3mVm)1/2 will
result in the quadratic coefficient in the expansion of the potential about its minimum being
equal to 1

2. The best way to find the spectrum of the Hamiltonian (A3) seems to be the
diagonalization in the discretized coordinate representation [27]. The results obtained in
this way are referred to as ‘exact’ quantum-mechanical results. The values of〈E〉,

〈E〉 =
∑

n

Ene−βEn

/ ∑
n

e−βEn (A4)

obtained in this way serve as reference data for the comparison with the QPIMC simulations.

Appendix B. Eigenvalues of the matrixaP

Let κ be an eigenvalue of the matrixaP of equation (19b) and u the corresponding
eigenvector. DenoteK = 2 − κ. Applying the firstP − 1 rows ofaP to u gives

uj = dj u1 − dj−1 uP j = 1, . . . , P (B1)

where

d0 = 0 d1 = 1 dj+1 = Kdj − dj−1. (B2)

Applying the last row ofaP to u gives

u1 = KuP − uP−1 = dP+1u1 − dP uP .

This equation and equation (B1) forj = P constitute a system of two equations for the
unknownu1 anduP . This system has a non-trivial solution if its determinant is zero. This
requirement results in the characteristic equation of the matrixaP in the form χP = 0,
where the characteristic polynomial is

χP = dP+1 − dP−1 − 2. (B3)

Here we have used the fact thatdj , as introduced by equation (B1), is identical to the
Chebyshev polynomial of the first kindSj−1(K) (see e.g. equations (A2) and (A3) of [28]).
One can also writeχP = 2TP (K/2) − 2, whereTj (x) is another, the most often used,
Chebyshev polynomial of the first kind. Again using equation (A3) of [28], we can rewrite
equation (B3) as

χ2k−1 = (K − 2)(dk + dk−1)
2 χ2k = (K2 − 4)d2

k . (B4)

This gives the correct eigenvalues (κ1 = 0, κ2 = 4) also fora2 of equation (19a). Equation
(B4) reflects the fact that one eigenvalue is alwaysκ = 0 (K = 2) for all P . Furthermore,
for all evenP another eigenvalue is alwaysκ = 4 (K = −2). All other eigenvalues are
doubly degenerate, being the roots ofdk = 0 for P = 2k anddk +dk−1 = 0 for P = 2k −1.
Note thatd2l is always divisible byK. Thus forP = 4l there is always a doubly degenerate
eigenvalueκ = 2 (K = 0).

One can evidently writedk as follows:

|K| 6 2 : K = 2 cosψ dk = sinkψ
sinψ

|K| > 2 : K = 2 cosh9 dk = sinhk9

sinh9
. (B5)
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Substituting these explicit expressions into equation (B4), one can see that all the roots of
χP = 0 are contained in the interval|K| 6 2 for all P . Obviously, all the doubly degenerate
roots can be written as

K
(P)
j = 2 cos

(
j

2π

P

)
k = 1, 2, . . . , b(P − 1)/2)c

wherebxc denotes the integer part ofx. Thus all the doubly degenerate eigenvalues ofaP

are

κ
(P )
j = 2

[
1 − cos

(
j

2π

P

)]
k = 1, 2, . . . , b(P − 1)/2)c. (B6)

If P = P1P2, thenκ
(P )
jP1

= κ
(P2)
j . That means thataP inherits all the eigenvalues from

all aP ′ such thatP ′ is a factor ofP . For all P = 2k, one can further write

j < k/2 : κ
(2k)
j = 2 −

√
κ

(2k)

k−2j

j > k/2 : κ
(2k)
j = 2 +

√
κ

(2k)

2j−k. (B7)

In this way one can express every doubly degenerate eigenvalue in terms of another doubly
degenerate eigenvalue. The exception isκ

(4l)
l = 2, which can be written formally in the

same form but in terms of the non-degenerate eigenvalueκ = 0: 2 = 2 ± √
0. A group of

the eigenvalues can be connected through equation (B7) in such a way that they constitute a
closed loop. More than one closed loop can exist for a givenP . For example, forP = 14,
there is one loop

κ1 = 2 − √
κ5 κ5 = 2 + √

κ3 κ3 = 2 − √
κ1

and for the rest we have

κ4 = 2 + √
κ1 κ6 = 2 + √

κ5 κ2 = 2 − √
κ3.

For P = 210, there are eight loops. The number of loops and their lengths seem to be
related to the prime decomposition ofP .

No such relations exist for oddP .
A special case isP = 2l when there are no loops, and all the relations (B7) constitute

a single tree with its root atκ = 2. To show this, let us renumber the eigenvalues in a
different way than as given above. Let us define

ψ1 = π

2
ψ2j = π − ψj

2
ψ2j+1 = π + ψj

2
.

Then forκj = 2(1 − cosψj ) we have

κ1 = 2 κ2j = 2 − √
κj κ2j+1 = 2 + √

κj j = 1, 2, . . . , 2l−2 − 1. (B8)

Thus forP = 2l , all the doubly degenerate eigenvalues can be written as

κj = 2 ∓
√

2 ∓
√

2 ∓ · · · ∓
√

2 (B9)

where there are between 0 andl − 2 levels of the square root, and all the sign choices are
independent.

For several small values ofP , table 1 contains expressions forκj alternative to
equation (B6). For smallβ, the values ofP of table 1 would be sufficient for most
HTPIQMC applications. To see what happens in the limit asP → ∞, the subsequence of
P = 2l can be used with the correspondingκj given by equation (B8) or (B9).
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Appendix C. Determinant and inverse of the matrix ãn

By the minor expansion from the first row, we get the following recursion relation with
respect to its ordern for the determinant of matrix̃an of equation (31):

det(ã1) = 2 + δ det(ãn) = (2 + δ) det(ãn−1) − det(ãn−2) n > 1

(assuming det(ã0) = 1). Comparing this with equation (B2), we see that

det(ãn) = dn+1 (C1)

where the argument of the Chebyshev polynomialdk is now equal to 2+ δ. Becauseδ > 0
by definition, we can use the substitution 2+ δ = 2 cosh9, and from equation (B5) we
have

dn = F 2n − 1

Fn
√

δ(4 + δ)
(C2)

whereF = e9 = 1 + δ/2 + 1
2

√
δ(4 + δ) (i.e. sinh9 = 1

2

√
δ(4 + δ)).

In the same way, one can express all the minors ofãn in terms of thedk polynomials
of (2 + δ), and get the formula for the elements of the inverse matrix

(ã−1
n )ij = dmin(i,j)dn+1−max(i,j)

dn+1
.

Using equation (A3) of [28], one can easily verify thatãnã
−1
n = 1. What we only need in

equation (32) is

Sn =
n∑

i=1

n∑
j=1

(ã−1
n )ij = 1

dn+1

[ n∑
i=1

didn+1−i + 2
n−1∑
i=1

di

n∑
j=i+1

dn+1−j

]
.

Using equation (C2), we obtain after a lengthy manipulation

Sn = 1

δ

[
n + 1 −

√
4 + δ

δ

F n+1 − 1

Fn+1 + 1

]
. (C3)

In the limit of δ → 0, dk(2) = 2 andSn = 1
12n(n + 1)(n + 2).
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