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A high-temperature approximation for the path-integral
guantum Monte Carlo method
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Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
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Abstract. A high-temperature approximation for the discretized path-integral quantum Monte
Carlo (PIQMC) method is formulated. At higher temperaturespdictitious classical particles
representing a single quantum particle stay close together, and an efficient approximation
is obtained when, in the primitive short-time propagator, an essentially local harmonic
approximation is used for the external potential at the common centre of madictitious
particles—the integration oveP — 1 dimensions can then be carried out analytically, and a
classical formula of the effective-potential type is obtained for the partition function.

Also discussed are the proper form and applicability of the virial total-energy estimator
for finite systems, and the computation of the temperature dependence of the configurational
partition function in a single PIQMC run.

1. Introduction

The success of the classical NVT ensemble (Metropolis) Monte Carlo (MC) method [1]
led to a considerable interest in devising the quantum variants of the method based on the
Feynman’s path integral formulation of the density matrix [2, 3]. For bosons, two versions
of the path-integral quantum Monte Carlo (PIQMC) method have been formulated—the
discretized PIQMC method [4-8], and the Fourier PIQMC method [9, 10]. Various real
systems have already been successfully studied using these methods [8, 11]. Nevertheless,
it remains important to look for ways to speed up their convergence. One way to achieve
this goal is to construct more accurate short-time propagators [12—-16]. A complementary
approach is to use the Gibbs inequality to ‘average away’ at least some Bfifmanorphic
degrees of freedom. The simplest approximation of this kind is the Feynman—Hibbs effective
potential method [2, 3]. A similar Gaussian transform of the potential is used in the partial
averaging of the Fourier PIQMC method [10], which can be arbitrarily refined. Another,
more complicated approach is to combine the use of the Gibbs inequality with perturbational
and variational procedures [17].

Here we proceed along yet another path. The initial impulse for this work came from
our exploration of the use of PIQMC simulations for the study of surface adsorption. It
led us to the formulation of an approximate discretized PIQMC method that is as simple
as the Feynman-Hibbs effective potential method. However, our ‘effective potential’ does
not involve a Gaussian transform at all. Here we stay within the confines of the primitive
(constant-potential) short-time propagator within the discretized PIQMC method. In the
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coordinate system corresponding to normal modes of the isomorphic polymer, we expand
the external potential about the common centre of mass aPthietitious classical particles,
truncate the potential at the quadratic term at the most, and use this truncated potential in
the primitive short-time propagator. The end product is an approximate formula for the
guantum partition function that can be written in the form of a classical formula with
guantum corrections. In thé — oo limit this approximation gives exact results at
high temperatures in all cases, and for the harmonic oscillator potential this applies

all temperaturesand it is expected to give good results in a wide temperature range for
a class of anharmonic oscillator potentials. Even at low temperatures this approximation
seems to be much better than previous approximations of comparable complexity [3, 10]
that do not give exact results even for the harmonic oscillator potential.

In section 2 the discretized PIQMC method is reviewed briefly and the proper form
of the virial total-energy estimator for box-like potentials established. PIQMC simulations
for the 9-3 potential of appendix A and the usefulness of the corrected virial estimator for
this potential are discussed in section 3. In section 4 the direct quasi-random integration
of the P-dimensional integrals for the ensemble averages occurring in the PIQMC method
is described. The insight obtained in sections 3 and 4 is then used in the formulation
of the approximate high-temperature PIQMC method in section 5. Some technical details
are presented in the appendices. In section 6 the possibility of obtaining the temperature
dependence of a configurational partition function in a single PIQMC run is demonstrated.

2. The discretized PIQMC method and the virial total-energy estimator

In the discretized PIQMC method based on the primitive short-time propagator [4-8],
the quantum canonical partition function of one particle in the external potevitia)

is approximated by that of a cyclic chain &f classical particles, which, in one dimension,

is

Qp = cP/Z/ dx1-~/ dxp et ()

where
Cn & 1<
Up=aptir  ar=—0) -3’ =32 Vi
=1 =1

C =mP/2nBh?, xpi1 = x1 = x, andp = 1/kT is the reciprocal temperature. Equation (1)
can be written as

Op =/ dx1 pp(x1, X1, B)

where pp is the P-approximation of the canonical density matrix, whose diagonal matrix
elements are

,OP(X,X,,B)E,OP(X)=CP/2/dxz-'-v/dxpefﬂw- (3)
SubstitutingQ p in the total-energy formula
alnQ
E)=— 4
(E) =" (4)

yields the approximation

P
ePzﬁ_aP"‘)‘-P- (5)
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Hermanet al [6] have shown that the variangée2) = ((ep — (ep))?) of this estimator
diverges as® — oo. They have also shown that in an infinite Hilbert space a virial theorem
applies, and another good total-energy estimator is the virial estimator,

P

aV(x;
=, fo R ©)

which has finite variance aB — oo.

For a potential defined only in the finite interv@min, xmax), the limits of integration
in all integrals in equations (1) and (3) atgin andxmax. In this case, the average value
(€ "") of the virial estimator of equation (6) depends on the origin of coordinates,

(€l = (ep) —

P
7
260, )

where

@ = XmaxPp (Xmax) — XminPP (Xmin)

8
= Xmin[ PP (Xmax) — o (Xmin)] + Lop (Xmax) (®)

L = xmax — Xmin, and Qp and pp are given by equations (1) and (3). By equation (7),
€Y' is not always a good total-energy estimator. Whereas the exact densities must be equal
to zero at the system boundarigsixmin) = p(xmax) = O, this is not true for theirP-
approximantsoP For example, in a symmetric system whpn(xmax) = pp(xmin) # 0,
(e "") is consistently less positive or more negative than = (ep).

If pp(*max) # pp(xmin), ¢ depends on the position of the coordinate origin and can
always be made equal to zero by the following coordinate transformatioa:x +xo— Xmin,
where

Lpp (Xmax)

= — . 9
0 Gimand — P Cimin) ©

In the new coordinate systemj,, = xo, and equation (8) giveg’ = 0. The virial estimator
corresponding to this special choice of coordinate origin, expressed in the old coordinate
system, is

av(xt)

6\1/3"0 2P Z(xt —+ X0 — Xmin) +Ap. (10)

Then

( V|r0)

€p (ep).

In a general case, the disadvantage)’df? is that one has to know in advangg (xmin)
and pp(xmax) to be able to calculateg. However, if V(xminy) = 00, pp(xmin) = O
(see equation (3)) andy = —L. This happens to be the case for the 9-3 potential of
equations (A1) or (A3). For this potential,, = 0, and

= os Z( x — L)

Similarly, if V(xmax—) = 00, pp(xmax) = 0 andxgo =0

8V(Xz)

+ Ap. (11)
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Figure 1. Localization of the quantum particle as a function of inverse temperature. In
this schematic representation of the isomorphic polymer, particles P tare represented
consecutively by the firsP symbols from the series 0, 1,.2,, 9, A, B,..., Z, a, b,.., z.

The polymer may be folded over itself many times, with more than one polymer particle in
a given bin in the histogram of, the height above the surface; only the highest index is
shown in each bin. Data for parts of two different runs, without the whole-polymer moves, are
shown every 50000 MC cycles for the truncated 9-3 potential wgts 3 ,&, Vin = 4.8 meV,

m = 1837151 52ng.

3. Path-integral quantum Monte Carlo simulations for the 9-3 potential

In this section, we briefly review the results of the standard discretized PIQMC simulations
for the truncated 9-3 potential of appendix A, with parameters corresponding to H of a
molecule of HF adsorbed on the surface of solid LiF [18] £ 1837.152n¢, zo = 3 A,

V. = 4.8 meV). For these values, the ground-state enerdggpis= —1.9020 meV.

At low temperatures8 > 2 meV!) the particle shows strong quantum behaviour,
being well delocalized (figure 1(a)), and good convergence is obtained using the simple
PIQMC method. For high temperaturgs < 1 meV1) and largeL, whole-polymer moves
must be attempted periodically to speed up the sampling of the whole allpwatge (cf
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Figure 2. The converged path-integral quantum Monte Carlo resultgepy for the same 9-3
potential as in figure 1. Diamond®): L = 10 A {8 > 1.4 meV-1: 107 cycles, P = 60;

B =1.0meV1 10’ cycles,P = 40; 8 = 0.5 meV-1: 4x 10’ cycles,P = 40; 8 = 0.2 meV 1
2.5x 107 cycles,P = 10}. Boxes(O): L = 40A {g = 1.0 and 20 meV-1: 10’ cycles,P = 60;

B =14meV! 15x10 cycles,P = 60, four different values of the maximum whole-polymer
shift (2-10A) used: 8 = 0.5 meV-1: 2.6x 107 cycles,P = 40; 8 = 0.2 meV-1: 4x 107 cycles,

P = 10}. In all cases except forL. = 10 A and 8 > 1.4 meV-1, whole-polymer moves were
performed. Full curves labelled hly represent the exact values @) of equation (A4).

figure 1(b)) where without the whole-polymer moves only a small part of the allowed range
was sampled in fcycles). Figure 2 shows that by using large enough valueB &dr
different values of8 and L excellent agreement of the PIQMC results with the exact values
of (E) can be obtained. Fg8 = 2.0 meV-%, P = 60 is clearly still not large enough. The
dependence of the convergéd-) on P is illustrated in figure 3.

Figure 4 compares the exact (as obtained by the diagonalization procedure mentioned in
appendix A) guantum-mechanical particle densityQ)p(z, z, 8) with the average density
of quantum polymer particles for one of the simulations of figure 2. The discrepancy at the
density peak is an artifact of the averaging occurring in a histogram bin of widthised
to evaluate the PIQMC density.

As illustrated in figure 5, in accordance with equation (€)") is consistently less than
(ep); this difference decreases with Using (eﬂro) to correct for the origin dependence,
equation (11), produces close agreement \4th). The dependence of the variances pf
ande}" on P, figure 6, is similar to that in the harmonic oscillator (cf figure 2 of [6]).

It seems that the corrected virial estimatf® of equation (11) is not much more
useful thane". Although the value ofeli™) is close to(ep) it is evident from figure 5
that its convergence to the same limit @) is extremely slow. In other cases, the rate
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Figure 3. Dependence ofep) (0) on P. (@) L = 10 A, 8 = 4.0 meV-1, 2 x 10° cycles, no
whole-polymer moves; (bl = 10 A, B =05 meV1 4x 10 cycles, whole-polymer moves
done every five cycles. Same potential as in figure 1. Full horizontal lines represent the exact
values of(E) of equation (A4).

of convergence may be even more discouraging than that in figu(e;‘S’:) may fluctuate
around(ep) without any sign of damping, and its variance seems to always be much larger
than that ofel". For example, the values dB(e%™)?) for 10’ cycles corresponding to
figure 6(8 = 4.0 meV1) vary from 42.65 me¥ for P = 2 to 31.15 meV¥ for P = 150. It
seems thats (e}©)?) is always much larger thafs (}")?) and(s€2) in the range of values
of P required to get a satisfactory agreement«f) with (E).

The fluctuations ofe;iro are evidently due to the presence of thel term in
equation (11). Because of this term, the main contributiote}#’) comes from the region
to the left of the minimum of the potential where the derivative of the potential is large and
the sampling may not be satisfactory.
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Figure 4. Comparison of the exact normalizedo particle density (full curve) with the PIQMC
results(¢) for one simulation of figure 22 = 10 A, g = 1.4 meV 1.

4. Direct integration of thermal averages for small 3

In this section we prepare ground for the approximate PIQMC method formulated in the
next section by exploring what contributes most to the PIQMC ensemble averages that are
given by ratios ofP-dimensional integrals of the type
Ay = Do B S dep ApGrn, o xp)e
T L o depetir

(12)

whereAp(xy, ..., xp) are suitable estimators, for example those given by equations (5) or
(11).

It can be seen from equation (2) thatfs> 0 (T — o0), ap becomes extremely large
except when alk, are almost identical, i.e. near a body diagonal of the integration volume
in equation (12)—aP-dimensional cube of edge = xmax— xmin. P-dimensional integrals
with the values ofP used in the previous section for smdll can be calculated using
pseudo- or quasi-random grids (see e.g. [19, 20]). To speed up convergence, integration in
equation (12) can be confined to a narrow ‘channel’ around the body diagonal wifé&re e
is significantly different from zero. To make things simpler, a channel of rectangular cross
section is chosen. A Cartesian coordinate system is used where one basis agctsr,
parallel to the body diagonal, and all the otheus, ..., up, are perpendicular to it. The
width of the integration channel is the same in all the directiaps. .., up, and will be
denoted as\. One way to choose the components of the normalized vectors; is

uy =1/VP i=1...,P (13)
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Figure 5. Comparison of the dependence on the number of cyclegg¥5f) () and (e} (0)
with that of (ep)(a) for the (8 = 0.2 meV~2, L = 40 A) point of figure 2.

and forj > 1,
1/viGG—=1 i<
Ui =1 =G =D/j =]
0 i>j
(another possible choice is discussed in the next section). The transformation to the new
coordinates; thus reads

»
Xi= Y &uj. (14)
=1

The reduced integration volume is the intersection of Badimensional rectangular prism
determined by the inequalities

Xmin Xmax A A .
—=S& < = -5 <§< < ji=2 (15)
JP TS UP 27752
and the original cube
Xmin < X < Xmax- (16)
Monte Carlo integration was performed as follows. A ‘random’ uniformly distributed
P-dimensional pointny, ..., np) in a unit cube, 6< n; < 1, was generated using either the

fast Halton quasi-random number generator [20] or the pseudo-random RANMAR generator

[21]. This point was then mapped onto the prism (15) as follows:
Xmin + n1L .
f="""TNT = (lema 22

JP
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Figure 6. Dependence oféef,)(@) and(&(e}" 2)(4) on P. Same parameters as in figure 3(a).

Then x; were calculated using equation (14), and it was checked whether this point
lies in the cube (16). If the answer was affirmative, integrands of all the integrals in
guestion (severalAp) can be calculated simultaneously) were calculated and added to the
respective accumulators. One of the accumulators was set up46r é&he denominator
in equation (12)). The total number of random points sampled in this way will be denoted
as N in what follows.

The particle densityp(x), as given by equation (3), can be calculated in a similar way.
For simplicity, for a givenx = x;, we integrate over &P — 1)-dimensional cube of edge
A centred around the point where all coordinates are equal to

A A
x-S <<ty i=2...,P. (17)

If this small cube ‘sticks out’ of the big cube of equation (16), we shift its centre along the
diagonal of the big cube so that it is fully contained inside the big cube.

All the numerical results in this section were obtained using the Halton numbers with
randomly selected starting points for individual vector components as described in [20],
which were found to be as good for this purpose as the pseudo-random numbers generated
by RANMAR, and might even lead to a somewhat faster convergence.

The value ofA and the numbeW of the random grid points can be adjusted to give
the best results. When is too small, the integral already converges for smallbut the
estimate ofQ p thus obtained is too small becaus# €- is still large outside the prism (15).
When A is too large, the generated quasi-random grid is so sparse that few points lie in
the region near the main diagonal wherd & is non-zero even for very larg¥, and the
estimate ofQp will again be too small. Let us denote b¥yr(A, N) the approximation
to Qp of equation (1) obtained wittv quasi-random points uniformly distributed in the
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Figure 7. Dependence o0 p(A, N) on A for several values oN; P = 10, 8 = 0.2 meV 1.
Same potential as in figure L, = 40 A.

prism (15). ThenQpr(A, o) is expected to be a monotone function Afthat at first
increases rapidly and then, fégx > Ao, approaches a constant, equal to the exact value
QOp = Qp(00,0). Ag corresponds to the situation when the prism (15) just circumscribes
the region with non-zero €Y7, To get the value ofQ»(A, o) for larger values ofA
requires extremely larg®’. Thus the best approach may be to pidt (A, N) for a fixed

N as a function ofA. This function should have a maximum At ~ Ag. When this
maximum does not change any moreMss further increased (see figure 7), we can stop
the integration and consider the values of various averages (12), obtained with the value
of A corresponding to the position of the maximum of 3@ (A, N) curve, as reasonable
estimates that can be obtained in the shortest possible time.

Similarly, let us denote byp(x; A, N) an estimate t@p(x) obtained usingv random
(P — 1)-dimensional points uniformly distributed in the cube (17). Again, for the same
reason,op(x; A, N) with constantV has a maximum at certaing. When this maximum
does not change any more Asis further increased, we take it as a good approximation of
pp(x). Forx = xmax this estimate ofop(x) is usually much better than the one obtained
from the PIQMC simulations as described in the previous section. The calculatigr(of
seems to require larger values 8fthan that ofQ» and average energy.

For the parameters of figure (8 = 0.2 meV!) we have the following estimates:
Q10=171, (e10) = 2.14+0.05 meV (the error estimate corresponds to the amplitude of the
fluctuations of(e;0) betweenV = 107 and 2x 107), (e}i) = —0.37 meV (using the incorrect
formula (6)), (egg% = 2.4 meV. From a different MC integration fgrio(xmax A, N), we

have p10(Xmax) = 0.0442 AT These values givéP/280p)¢ = 2.58 meV, and thus
equation (7) is very well satisfied with the error between its right- and left-hand sides
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being of the order of 0.1 meV (recall that (xmin) = 0). For comparison, a PIQMC
simulation gaveep) = 2.13 meV (cf figure 2) ande‘l’go) = 2.17 meV. The exact value is
(E) = 2.143 meV. Of course, the exact quantum density&i is always equal to zero.
In this respect, the PIQMC method is always incorrect for firfite

We have also performed modified calculations in which the integration was extended
over the whole volume of the prism (15), i.e. the condition (16) was ignored. This only
affected the results slightly, because for snfathnly a negligible portion of the prism (15)
lies outside the big cube. Thus extending the integration limits to infinity everywhere in the
direction perpendicular to the main diagonal does not significantly change the results.

The CPU time required to obtain converged integrals of equation (12) for a single value
of A is about half of the time needed for a corresponding PIQMC simulation with the same
P. However, the total CPU time can be much larger due to the necessity of repeating the
calculations for different values af. We do not expect that this approach in its pure form
will find any practical application. Perhaps it could find some use as part of a hybrid method
along some directions of the configuration space in combination with the standard PIQMC
simulation for the remaining degrees of freedom. An approximate approach along this line
is formulated in the next section. The primary purpose of this section was to provide a
starting point and some justification for the high-temperature approximation presented in
section 5.

5. A high-temperature approximation for the PIQMC method

In this section, working in the normal-mode coordinatespy we apply an essentially local

harmonic approximation for all the occurrences of the external potential in equation (12).

Most of the integrals occurring in equation (12) can then be evaluated analytically and an

efficient high-temperature approximation of the PIQMC method (HTPIQMC) is obtained.
The formula forap of equation (2) can be written as

Cr <&
ap = — xi(ap)ijX; (18)
B 5=
where
2 =2
w=(2 7) (19)
2 -1 0 -.- 0 -1
-1 2 -1 0 0
o -1 2 ... 0 0
ap=|. T P>2 (190)
0 0 o ... 2 -1
-1 O o ... -1 2

Let «; be the eigenvalues afp, andu; the corresponding normalized eigenvectors. The
values ofx; depend onP (see appendix B and table 1). Where no confusion can arise, in
what follows we do not explicitly denote all the dependences;ofu;, and many other
guantities to avoid complicated notation.

With this choice of u;, let us define new coordinate§; again using the
transformation (14). It is obvious from equations (19) that for arbitrBry= 2 one of
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Table 1. List of the doubly degenerate eigenvalues of the matgxfor small values ofP.

P Kj

3 3
4 2
5 (5¥v5)/2
6 1,3
7 [7-2J7cos(¢/3)]/3, [7+ /7 cos(p/3)]/3F /(7/3) sin(p/3)?
8 2,272
9 3, 2[1+cos(/9)], 2 — cos(r/9) F +/3sin(/9)
10 BFV5/2, BFV5H/2
12 2,1,3, 2r4/3
14 [7—-2V7cos(p/3)]/3, [T+ V7 cos(p/3)]/3F /(T/3) sin(p/3),
[5+ 2V7cos(p/3)]/3, [5— V7 cos(p/3)]/3 F /(7/3) sin(p/3)?
15  3,6F+5)/2, [7T—V5F /65— v5)]1/4, [T+ /5F/6(5+/5)]/4
16 2, 2% 2, 25V2— 2,252+ /2
18 1, 3, 2[1F cos(r/9)], 2 F cos(rr/9) + +/3sin(m/9), 2F cos(r/9) — +/3sin(r/9)
20 2,3Fv5/2 5Fv5)/2 27 /(6 V52, 2% /(6+5)/2

a Here cog = 1/(24/7) and 0< ¢ < /2.

the eigenvalues afp is always zero, let us say = 0, and the corresponding eigenvector
is given by equation (13). Thus we may write

P
Xi = j%—i—;éjuﬂ (20)

Becauseazp is a real symmetric matrixe; constitute an orthonormal basis:

P
Zujiuk,- = Ojk- (21)
i=1

As a result of this orthonormality, the last term in equation (20) represents a component of
a vector perpendicular to the main diagonal. Using equations (20) and (21), one gets the
normal form
C P
ap = i Kjg-z. (22)
B 4 !
j=2

Substituting this into equation (1) and switching to theoordinates gives

VP Xmax +00 +00 P
0=t/ f déy / d, - f e exp[ —Cx Y gE? - ﬂkp]. (23)
) ) 2,

\/Fxmin (o] oo

Here we have already made an approximation by extending the integration limits in the
directionsé,, ..., &p (perpendicular to the main diagonal) to infinity. Whegi, = —oo
and xmax = 400 (such as for the harmonic oscillator), this is no approximation at all. For
the truncated 9-3 potential, we have verified in the previous section that this extension of
integration limits does not change the results significantly for high temperatures.

For high temperatures, we know that the integrand in equation (23) is significantly
different from zero only foi§; ~ O; j > 2. Here one can exparid(x,) present inkp into
a Taylor series at = & /+/P (the common centre of mass of all particles) and truncate the
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expansion after the term of degree 2Vif (x) > 0, or otherwise also neglect the second-
degree term. In this way, using equation (20) and (21),

1 P P
)\p = PZV(X-FZ%_]MJ;)
j=2

t=1

12 P P 2
~ 3 [V(x) +V'(x) Zéjuj; + % max(V” (x), 0)(;51‘ ”jt> }

=1 j=2
1 P
= V) + 5 maxV'(x0),0) 3 & (24)
j=2

wherex = £/+/P. Substituting this truncated Taylor series into equation (23) gives the
desired high-temperature approximation @p:

(hﬂ CP/Zf d_xe ﬂV(X)l_[f —y,(X)E dé:'
Xmin

wherey;(x) = Crk; + (8/2P) max(V"(x), 0). The integrals ove§; can now be evaluated
analytically, and we get

D — ' PCPqp (253)

Xmax p
= B(x)e PV dy B(x) = T 250
qr / (x)e €9 E /yj © (250)

Using the same approximations f@tp) and (Ap) gives

(op) ™D = 22 (26a)

qp

Cr Fmax P Kj ]
op = — B(x)e V™ dy 26b
r=a ) [;‘W) (x) (26b)
and

i
(hp) =27 (27a)

qp

Xmax P

= [vm F o maxy’(),0) > e
When deriving these formule, approximation (24) was used for all occurrences diote
that one could further improve equation 7y including an arbitrary number of terms
in the Taylor series of.p when Ap occurs as the prefactor of €V7(in the role of the
Ap(x1,...,xp) term of equation (12)) while retaining at most the term of degree 2 in
e #Ur. This would lead to the appearance of additional terms inside the square brackets of
equation (2B) proportional to even-order derivatives Bf(x), and the rest of the integrand
would remain unchanged. However, these additional terms would also be dependent on the
components ofu;, which would complicate the computation considerably. For example,
the next term inside the square brackets Woulc{17¢82P)V<4)(x)T4(x), where

P P
Ta(x) = ]; V()2 2 u]l Z Z

] =2 k= ]+1 V/ (x))/k(x)

i|B(x)e’3V(") dv. (270)

P

Zuf, 2 (28)
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Proceeding in the same way for the virial estimator of equation (11), we get

_vird

(o) = 7 (29%)
qp

p0 = / f(x)+if”<x)i W) 4 Bt dy

P 4P Sy | 32P N

(29%)
where
@) =k +DV® @) + 3 — LHVED(x) k> 0.

Dropping the—L term in this formula gives the expression f@i") "™ (cf equation (6))
suitable forxmin = —0o andxmax = +00. The HTPIQMC results presented below have been
obtained using only the harmonic approximationiR heglecting all the terms proportional
to f®(x) and higher derivatives of (x) in equation (28).

Note that equation (2§, (26b), (27b), and (2®) have the form of the classical averages
of position-dependent functionB(x), (Cx/28) Z;;z[/c,/yj (x)]B(x), etc, over a classical
canonical ensemble corresponding to the poteritiat). In principle, one can use the
classical MC simulation to calculate these averages. In the present case, it is of course
much simpler to carry out the remaining one-dimensional integration in equatiohy (25
(26b), (27), and (2®) numerically (we have used the Romberg interpolation scheme for
this purpose). However, a generalization of this approximation to the case of many quantum
particles could naturally lead to such an essentially classical MC simulation involving certain
guantum corrections while retaining a number of degrees of freedom comparable to the
classical case, which is a major gain in efficiency.

A similar approximation can be derived for the particle dengityx) of equation (3).
As we observed in the previous section’¥ for a givenx = x; is significantly different
from zero only forx, ~ x3 ~ --- &~ xp &~ x. Itis thus possible to truncate the Taylor series
for Up, keeping only the terms of at most degree 2 or less,

Vi = Xip1— X i=1...,P-1

to get
P-2 1 Pt

Up ~ C|yf+ Y i = yir)? + o1 [+ V) + 2 Y [V(x)yi + 3 maxO, V' (x))y7]
j=1 P =

(here the terms originating from, are exact). This can be rewritten as
Up~Vx)+b-y+Cy-ap1-y (30)

where all the elements @f are identicalp; = (1/P)V’(x), andap_; is a tridiagonal matrix
of the orderP — 1 with the following non-zero elements:

(ap-1)ii =2+96 8 = (1/2PC)max0, V" (x))
(ap_1)ij =-1 if i —jl=1 (31)

Substituting equation (30) into equation (3) and extending the integration limiteto
in all integrals (justified for high temperatures) gives

+o0 +00
pl (x) = CP/Ze‘f’V(’”/ dy1~~/ dyp exp(—BCy -dp_1-y — Bb-y).

—00 o]
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Again using a transformation of type (14), whetgeare now eigenvectors of the matrix (31),
this can be evaluated analytically [22] to give

H (P-1)/2
tD, ¢ o —BV () Boya .
pp (x) = (dEI(&p_l)) (ﬁ) e exp[4Cb ap-y b:| . (32

The determinant dé&ip_1) is given by equation (C1) and (C2) of appendix C. The matrix
product in the argument of the last exponential is

1 1 2
b-azt b=|— | Sp_
9r-1 [PV’(x)i| Pt

whereS, = >7 ; Z';:l(d,;l),-j. The sums, of all elements of the inverse matrﬁg1 is
given by equation (C3) of appendix C.

1 T T H T T T T T T T T T T T T T T T T T

(e) (meV)
a+

G+

B (meV‘1)

Figure 8. Comparison of the HTPIQMC results of section 5 for the 9-3 potential with the exact
PIQMC results, from direct Halton integratiol? = 2. Boxes((J): HTPIQMC values of{e3)
obtained using equations (25)—(27). Diamori@3: HTPIQMC values of{e») obtained using

the modified formule corresponding to the finite integration limits inghéirection (such that

the resulting two-dimensional integral is over the square 8; 2 < L/o). Crosses+): the
values of(ey) obtained by Halton integration. Same potential as in figuré & 40 A. The

full curve represents the exact value (@) of equation (A4).

For P = 2, it is easy to find the exact integration limits f&y in equation (23). In
figure 8 results obtained with such exact integration limits are compared with the standard
HTPIQMC results corresponding ]ﬁj’ooo dé,. One can see, that they are practically identical.
This again supports the assumption that the extension of integration limits to infinity does
not introduce any significant error.

What is somewhat surprising in figure 8 is the fact that for arbitg@rthe HTPIQMC
results forP = 2 are very close to the exact PIQMC results #®r= 2, which can be
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(€p) (meV)

B (mevl

Figure 9. The HTPIQMC values ofep) obtained inothe limitP — oo (P =°256) for the same
9-3 potential as in figure 1. Diamond$é): L = 10 A; boxes((J): L = 40 A. The full curves
labelled byL represent the exact values @) of equation (A4).

obtained very easily by the direct Halton integration of the previous section (much faster
than PIQMC simulation). Of course, except for the smallest valugs ttfie P = 2 results

are far from the exactk = oo) results. AsP increases, the close agreement of the
HTPIQMC and the exact PIQMC results is maintained only for small values. oThis

can be seen in figure 9 where the HTPIQMC results are compared with the exact values
of (E). Inthe P — oo limit, the exact PIQMC results must be identical with the exact
(E) values. Thus for the 9-3 potential, the HTPIQMC method is indeed a high-temperature
approximation. The HTPIQMC value fQEﬂro) is consistently below that fofep) even for

the smallesi.

In figure 10 we present the HTPIQMC density obtained using equation (32). One can
see that it agrees with the exact density quite well everywhere, except near the peak. Similar
plots were obtained for a large range gfwith the excess HTPIQMC density at the peak
increasing withg.

Equations (25) can also be written in the form of a classical expression,

h m Xmax
an _ [ ™ / e BVen() iy
2rth ﬁ Xmin

Veit(x) = V(x) — ; In[PCP~V72B(x)].

where

Note that the form of our effective potentidkx(x) is very different from the Gaussian
transform form of the Feynman—Hibbs effective potential, see for example equations (3.81)
and (3.90) of [3].
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Figure 10. Comparison of the exact normalized particle density (full curve) withkhe> oo
HTPIQMC results(¢) for B = 0.3 meV! for the same 9-3 potential as in figure 1 with
L =40A.

Let us now compare our HTPIQMC method with the two previous approximations of
comparable complexity—with the above-mentioned Feynman—Hibbs effective potential, and
with the simplest form of the partial averaging of the Fourier PIQMC of Rolal [10]
corresponding tkmax = O in their formule. Whereas ouP — oo HTPIQMC method
gives exact results for the harmonic oscillator potential, the two previous methods do not.
Furthermore, they cannot be applied at all to the 9-3 potential because of its behaviour at
x = 0;, whereas the HTPIQMC method gives, for sméJl satisfactory results even for
this difficult case. Finally, let us compare the three methods for the quartic oscillator with
Vix) = %x“(m =h = 1). For this case, the Feynman—Hibbs effective potential method [3]

gives
LT B4, Bo B
0= g [ oo 50+ 5 ) o

and thekmnax = 0 form of the partial averaging approach [10]

~ 1 o0 r ,3 4 ) 2
o= /m/_wexp_—z( + Bx +10)}dx.

Using these two approximations f@ in equation (4) gives the approximations @) that

are presented in figure 11 together with the HTPIQMG~ oo results. One can see that

for all B the HTPIQMC results are much closer to the exact valueEdf(obtained again
using the procedure of [27]) than the results of the other two approximations. Whereas
these two methods always give an upper bound for the (free) energy, from the way our
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high-temperature approximation fay was derived, it seems that it could, most of the time,
give alower boundof the energy.

3.0

25k

15|

(E) (auw.)

05 F

0'0 ] 1 1 1 |
0 2 4 6 8 10

B (au)

Figure 11. The HTPIQMC P — oo values(OJ) of (ep) for the quartic oscillator potential
Vx)= % 4(m =Rk = 1). For comparison, the results obtained with two other approximations
of comparable complexity—with the Feynmann—Hibbs effective potential metihodand the
simplest form of the partial averaging approa¢h—are also shown. The full curve represents
the exact value ofE).

Unlike in the case of the 9-3 potential, for the quartic oscillator the HTPIQMC procedure
gives practically identical estimates fee!') and (ep). The HTPIQMC density is again
larger near the peak (at= 0) than the exact density.

The CPU time required for an HTPIQMC calculation usifg < 256 is orders of
magnitude smaller than that for full PIQMC simulations or from direct Halton integration
of comparable accuracy. Fdt = 2" with n > 8, one usually encounters overflows when
calculating the integrands of equation K250 (2%); however, the convergence (Bs— o0)
is usually achieved well befor® = 256. ForP = 2" we use equation (B9).

6. Calculation of the configurational partition function Qp

In this section, we discuss the possibility of obtaining thdependence o p in a single
PIQMC run. Note that in section 4 and 5 we were able to calculate directly the absolute
values of the partition functio® ». Especially for smalleg, both methods are quite reliable
and give identical results. On the other hand, a direct calculation of the values of a partition
function in the usual MC simulation, for example, using the method of Salztuad)[23]

(i.e. usingAp(x;) = €"#Ur in equation (12)), is known to be flawed (e.g. [24]). However,

a suitable choice ofip (x;) can yield theg dependence of the partition function in a certain
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range ofg in a single PIQMC run. Substituting
Ap(xi) = exp[BU»(B) — BU(B)] (33)

into equation (12) gives

(34)

Cp) T/z 0r(h)
chHl o0rB)

Here we denote explicitly the dependence of all the quantities on the inverse temperature
B, and()z means that the canonical ensemble average is calculajgd at

In the case studied her&p (B) = ap(B) +Ap, Whereap(8) = @ p/p?, cf equation (2),
whereap andip do not depend op. Substituting this expression into equation (34) gives

(explBUp(B) — BUp(B)])p = [

) B\P/2 T8
Qp(B)=0Qr(p) (B> <exp{(,3 -B) [—Bap(ﬁ) +)\Pi| }> . (35)
B

Choosing 0< B « B here gives a very small value of the exponential in most of the
configurational space (except in the vicinity of the main diagonal). This would make it
possible to obtain the rati®»(8)/Q p(B) for an arbitrary number of values ¢, i.e. the

B dependence oD, (f) in a single PIQMC simulation performed at a larger valugof

A different method to achieve the same goal has recently been proposed by Lyubartsev
et al [25] who use multi-temperature expansion of the canonical ensemble. Here all the
averaging is done at a single temperatfreusing a series of estimators of equation (33)

for the other temperatures.

We have tested this approach fBr= 2 where the exact values @f,(8) (which are of
course not identical withQ ., (8) for large 8) can be quickly calculated by the HTPIQMC
method (cf figure 8). The results fg¢@ = 0.5 meV! are presented in figure 12. For
B < B, excellent agreement with the exact valueshf(8)/Qp(8) has been obtained. As
expected8 > B gives consistently smaller values 6f»(8)/Q»(B) because the first term
of the exponent in equation (35) is positive and very large far from the main diagonal where
the sampling is expected to be poor. Further testing is needed for larger val#es of

7. Summary

The main achievement of this paper is the introduction of a high-temperature approximation
for the PIQMC method. This approximate method requires a negligible fraction of the CPU
time needed for standard PIQMC simulations, and has the potential for further improvement
by including higher-order terms in the local expansion of the potential. It gives exact
results for the harmonic oscillator potential, and it can be expected to be superior to
previous approximations of comparable complexity for a large class of potentials dealing
with molecular oscillations. Generalization of this approximate method to more complex
systems of interacting quantum particles requires further study.

A method for obtaining the temperature dependence of the configurational partition
functions in a single PIQMC run was proposed.

We have also found that even the corrected virial total-energy estimator that takes into
account the finiteness of the system is not very useful for the truncated 9-3 potential of
appendix A. For the values df already large enough to give tle— oo limit satisfactorily,
its convergence with the number of MC cycles is much worse than that of the direct total-
energy estimator.
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Figure 12. Boxes(0) represent the PIQMC rati0 » (8)/Q »(8) for P = 2 andg = 0.5 meV 1,
obtained for the 9-3 potential after»510° MC cycles using equation (35). The full curve
represents the exact values (obtained by the HTPIQMC method, cf figure 8). Other parameters
are the same as in figure 1.
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Appendix A. 9-3 potential

A solid occupying the left{ < 0) half of the space is approximated by a continuum of inert
atoms that interact with an adatom positioned somewhere in th® half of the space via
a Lennard—Jones potential. Then the resulting potential experienced by the adatom is [26]

V() = %Vm [(ZZO)9 - 3(“)3} 2> 0. (A1)

Z

HereV,, > 0 andzo > 0. This 9-3 potential has a minimum equal +d/,, at z = zo.
Because a MC simulation cannot sample an infinite region in finite time, we have to add
an infinitely high wall toV(z) atz = L > 0 (assumé/(z) = oo for z > L). Let E, be the
eigenvalues of the truncated Hamiltonian,

h? o

H:—ﬂaz—f—V(z) O<z<L (A2)



A high-T path-integral quantum MC method 3491

whereV (z) is given by equation (Al). To find,, it is convenient to introduce atomic-like
units by scalingz = ox and H = (h?/mo?H). Then
1d c1 Co L

Hz_é@—i_ﬁ_; O<x<; (A3)
wherecy = J(mV,,z3/0'h?) andc; = 3(mV,,z3/oh?). Usingo? = hzo/(3mV,,)Y/? will
result in the quadratic coefficient in the expansion of the potential about its minimum being
equal to%. The best way to find the spectrum of the Hamiltonian (A3) seems to be the
diagonalization in the discretized coordinate representation [27]. The results obtained in

this way are referred to as ‘exact’ quantum-mechanical results. The valyésy,of

(E)=)_ EneﬂE"/ > et (A4)

obtained in this way serve as reference data for the comparison with the QPIMC simulations.

Appendix B. Eigenvalues of the matrixap

Let « be an eigenvalue of the matrixp of equation (18) and u the corresponding
eigenvector. Denot& = 2 — . Applying the firstP — 1 rows ofap to u gives

uj=djur—dj_1up j=1...,P (B1)
where

dpo=0 d=1 diy1=Kd;j —d;_1. (B2)
Applying the last row ofap to u gives

uy = Kup —up_1=dpyius — dpup.

This equation and equation (B1) fgr= P constitute a system of two equations for the
unknownui andup. This system has a non-trivial solution if its determinant is zero. This
requirement results in the characteristic equation of the matrixn the form yp = O,
where the characteristic polynomial is

XP :dp+l—dp_l—2. (83)

Here we have used the fact thdt, as introduced by equation (B1), is identical to the
Chebyshev polynomial of the first kin§}_1(K) (see e.g. equations (A2) and (A3) of [28]).
One can also writgqp = 2Tp(K/2) — 2, whereT;(x) is another, the most often used,
Chebyshev polynomial of the first kind. Again using equation (A3) of [28], we can rewrite
equation (B3) as

X211 = (K — 2)(dy + dy—1)? X2 = (K? — &)d?. (B4)

This gives the correct eigenvalues & 0, k, = 4) also fora, of equation (18). Equation
(B4) reflects the fact that one eigenvalue is always 0 (K = 2) for all P. Furthermore,
for all even P another eigenvalue is always= 4 (K = —2). All other eigenvalues are
doubly degenerate, being the rootsdpf= 0 for P = 2k andd; +d;_1 = 0 for P = 2k — 1.
Note thatdy is always divisible byK. Thus forP = 4! there is always a doubly degenerate
eigenvaluec = 2 (K = 0).

One can evidently write; as follows:

sink
K| <2: K =2cosy dy = — W
siny
sinhk ¥
K| > 2: K = 2 cosh¥ di = . (B5)

sinhw
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Substituting these explicit expressions into equation (B4), one can see that all the roots of
xp = 0 are contained in the intervek'| < 2 for all P. Obviously, all the doubly degenerate
roots can be written as

K = zcos<j2;f> k=12, 1(P-1)/2)

where | x| denotes the integer part of Thus all the doubly degenerate eigenvalues ©f
are

@;P):2|:1—Cos<j2}7)[):| k=1,2,...,(P—1)/2)]. (B6)

If P = P1P,, thenk|,) = «{". That means thatp inherits all the eigenvalues from
all ap: such thatP’ is a factor of P. For all P = 2k, one can further write

j<k/2: K =2k,

j>k/2: K2 =24k, (B7)

In this way one can express every doubly degenerate eigenvalue in terms of another doubly
degenerate eigenvalue. The exception{® = 2, which can be written formally in the
same form but in terms of the non-degenerate eigenvalsed: 2= 2+ /0. A group of

the eigenvalues can be connected through equation (B7) in such a way that they constitute a
closed loop. More than one closed loop can exist for a giRerFor example, forP = 14,

there is one loop

k1 =2— \/Kks ks =2+ /K3 k3 =2— /K1

and for the rest we have

ke =24 /K1 ke = 2+ /K5 Ky =2 — \/k3.
For P = 210, there are eight loops. The number of loops and their lengths seem to be
related to the prime decomposition Bf
No such relations exist for od#.
A special case i = 2/ when there are no loops, and all the relations (B7) constitute
a single tree with its root at = 2. To show this, let us renumber the eigenvalues in a
different way than as given above. Let us define
b1 7 -\, 7T+
UJ1:§ qJZj:TJ lIJ21'+1: 2 ..

Then fork; = 2(1 — cosy;) we have

K1 =2 K2j =2 — JK; K2j41 = 2+ JK; ji=12...,272-1 (B8)
Thus for P = 2!, all the doubly degenerate eigenvalues can be written as

K,:z;\/z;\/z;-..:pfz (B9)

where there are between 0 ahd 2 levels of the square root, and all the sign choices are
independent.

For several small values oP, table 1 contains expressions fey alternative to
equation (B6). For smalB, the values ofP of table 1 would be sufficient for most
HTPIQMC applications. To see what happens in the limittas> oo, the subsequence of
P = 2! can be used with the correspondiaggiven by equation (B8) or (B9).
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Appendix C. Determinant and inverse of the matrix a,,

By the minor expansion from the first row, we get the following recursion relation with
respect to its order for the determinant of matri%, of equation (31):

detla)) =246 detia,) = (2+ 8) det(a,_,) — det(d,—_») n>1
(assuming défip) = 1). Comparing this with equation (B2), we see that

det(a,) = dn4+1 (C1)

where the argument of the Chebyshev polynonijals now equal to 2 §. BecauseS > 0
by definition, we can use the substitutiont2s = 2 cosh¥, and from equation (B5) we
have

F—1
Fn\/§(4+6)
whereF = e¥ = 1+ 68/2+ 1/5(4+9) (i.e. sinh¥ = 1/5(4+79)).

In the same way, one can express all the minorg,oifh terms of thed;, polynomials
of (2+ §), and get the formula for the elements of the inverse matrix

dy, = (C2)

@b, = dmin(i, j)@n+1-maxi, )
n /i — °

dn+1

Using equation (A3) of [28], one can easily verify that, 1 = 1. What we only need in
equation (32) is

n n

Sn = Z Z(d;l)ij = di |: ididn+1fi +2
n+lli=1

i=1 j=1
Using equation (C2), we obtain after a lengthy manipulation

1 VEFS i1
O S R it
5 §  Frilgl

n—

1 n
di Z dnJrlj] .
1

j=i+1

i=

(C3)
In the limit of § — 0, dx(2) = 2 and$, = n(n + 1)(n + 2).
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